Gunpowder
Download >>>>> https://urloso.com/2tDo5I
Gunpowder is classified as a low explosive because of its relatively slow decomposition rate and consequently low brisance. Low explosives deflagrate (i.e., burn at subsonic speeds), whereas high explosives detonate, producing a supersonic shockwave. Ignition of gunpowder packed behind a projectile generates enough pressure to force the shot from the muzzle at high speed, but usually not enough force to rupture the gun barrel. It thus makes a good propellant but is less suitable for shattering rock or fortifications with its low-yield explosive power. Nonetheless, it was widely used to fill fused artillery shells (and used in mining and civil engineering projects) until the second half of the 19th century, when the first high explosives were put into use.
In quarrying, high explosives are generally preferred for shattering rock. However, because of its low brisance, gunpowder causes fewer fractures and results in more usable stone compared to other explosives, making it useful for blasting slate, which is fragile,[6] or monumental stone such as granite and marble. Gunpowder is well suited for blank rounds, signal flares, burst charges, and rescue-line launches. It is also used in fireworks for lifting shells, in rockets as fuel, and in certain special effects.
Combustion converts less than half the mass of gunpowder to gas; most of it turns into particulate matter. Some of it is ejected, wasting propelling power, fouling the air, and generally being a nuisance (giving away a soldier's position, generating fog that hinders vision, etc.). Some of it ends up as a thick layer of soot inside the barrel, where it also is a nuisance for subsequent shots, and a cause of jamming an automatic weapon. Moreover, this residue is hygroscopic, and with the addition of moisture absorbed from the air forms a corrosive substance. The soot contains potassium oxide or sodium oxide that turns into potassium hydroxide, or sodium hydroxide, which corrodes wrought iron or steel gun barrels. Gunpowder arms therefore require thorough and regular cleaning to remove the residue.[citation needed]
According to Iqtidar Alam Khan, it was invading Mongols who introduced gunpowder to the Islamic world.[24] The Muslims acquired knowledge of gunpowder some time between 1240 and 1280, by which point the Syrian Hasan al-Rammah had written recipes, instructions for the purification of saltpeter, and descriptions of gunpowder incendiaries. It is implied by al-Rammah's usage of "terms that suggested he derived his knowledge from Chinese sources" and his references to saltpeter as "Chinese snow" (Arabic: ثلج الصين thalj al-ṣīn), fireworks as "Chinese flowers", and rockets as "Chinese arrows" that knowledge of gunpowder arrived from China.[25] However, because al-Rammah attributes his material to "his father and forefathers", al-Hassan argues that gunpowder became prevalent in Syria and Egypt by "the end of the twelfth century or the beginning of the thirteenth".[26] In Persia saltpeter was known as "Chinese salt" (Persian: نمک چینی) namak-i chīnī)[27][28] or "salt from Chinese salt marshes" (نمک شوره چینی namak-i shūra-yi chīnī).[29][30]
Hasan al-Rammah included 107 gunpowder recipes in his text al-Furusiyyah wa al-Manasib al-Harbiyya (The Book of Military Horsemanship and Ingenious War Devices), 22 of which are for rockets. If one takes the median of 17 of these 22 compositions for rockets (75% nitrates, 9.06% sulfur, and 15.94% charcoal), it is nearly identical to the modern reported ideal recipe of 75% potassium nitrate, 10% sulfur, and 15% charcoal.[26] The text also mentions fuses, incendiary bombs, naphtha pots, fire lances, and an illustration and description of the earliest torpedo. The torpedo was called the "egg which moves itself and burns".[31] Two iron sheets were fastened together and tightened using felt. The flattened pear shaped vessel was filled with gunpowder, metal filings, "good mixtures", two rods, and a large rocket for propulsion. Judging by the illustration, it was evidently supposed to glide across the water.[31][32][33] Fire lances were used in battles between the Muslims and Mongols in 1299 and 1303.[34]
The earliest surviving documentary evidence for cannons in the Islamic world is from an Arabic manuscript dated to the early 14th century.[37][38] The author's name is uncertain but may have been Shams al-Din Muhammad, who died in 1350.[31] Dating from around 1320-1350, the illustrations show gunpowder weapons such as gunpowder arrows, bombs, fire tubes, and fire lances or proto-guns.[33] The manuscript describes a type of gunpowder weapon called a midfa which uses gunpowder to shoot projectiles out of a tube at the end of a stock.[39] Some consider this to be a cannon while others do not. The problem with identifying cannons in early 14th century Arabic texts is the term midfa, which appears from 1342 to 1352 but cannot be proven to be true hand-guns or bombards. Contemporary accounts of a metal-barrel cannon in the Islamic world do not occur until 1365.[40] Needham believes that in its original form the term midfa refers to the tube or cylinder of a naphtha projector (flamethrower), then after the invention of gunpowder it meant the tube of fire lances, and eventually it applied to the cylinder of hand-gun and cannon.[41]
The state-controlled manufacture of gunpowder by the Ottoman Empire through early supply chains to obtain nitre, sulfur and high-quality charcoal from oaks in Anatolia contributed significantly to its expansion between the 15th and 18th century. It was not until later in the 19th century when the syndicalist production of Turkish gunpowder was greatly reduced, which coincided with the decline of its military might.[46]
The earliest Western accounts of gunpowder appears in texts written by English philosopher Roger Bacon in 1267 called Opus Majus and Opus Tertium.[47] The oldest written recipes in continental Europe were recorded under the name Marcus Graecus or Mark the Greek between 1280 and 1300 in the Liber Ignium, or Book of Fires.[48]
Some sources mention possible gunpowder weapons being deployed by the Mongols against European forces at the Battle of Mohi in 1241.[49][50][51] Professor Kenneth Warren Chase credits the Mongols for introducing into Europe gunpowder and its associated weaponry.[52] However, there is no clear route of transmission,[53] and while the Mongols are often pointed to as the likeliest vector, Timothy May points out that "there is no concrete evidence that the Mongols used gunpowder weapons on a regular basis outside of China."[54] However, Timothy May also points out "However... the Mongols used the gunpowder weapon in their wars against the Jin, the Song and in their invasions of Japan."[54]
In late 14th century Europe, gunpowder was improved by corning, the practice of drying it into small clumps to improve combustion and consistency.[57] During this time, European manufacturers also began regularly purifying saltpeter, using wood ashes containing potassium carbonate to precipitate calcium from their dung liquor, and using ox blood, alum, and slices of turnip to clarify the solution.[57]
By the mid-17th century fireworks were used for entertainment on an unprecedented scale in Europe, being popular even at resorts and public gardens.[59] With the publication of Deutliche Anweisung zur Feuerwerkerey (1748), methods for creating fireworks were sufficiently well-known and well-described that "Firework making has become an exact science."[60] In 1774 Louis XVI ascended to the throne of France at age 20. After he discovered that France was not self-sufficient in gunpowder, a Gunpowder Administration was established; to head it, the lawyer Antoine Lavoisier was appointed. Although from a bourgeois family, after his degree in law Lavoisier became wealthy from a company set up to collect taxes for the Crown; this allowed him to pursue experimental natural science as a hobby.[61]
Without access to cheap saltpeter (controlled by the British), for hundreds of years France had relied on saltpetremen with royal warrants, the droit de fouille or "right to dig", to seize nitrous-containing soil and demolish walls of barnyards, without compensation to the owners.[62] This caused farmers, the wealthy, or entire villages to bribe the petermen and the associated bureaucracy to leave their buildings alone and the saltpeter uncollected. Lavoisier instituted a crash program to increase saltpeter production, revised (and later eliminated) the droit de fouille, researched best refining and powder manufacturing methods, instituted management and record-keeping, and established pricing that encouraged private investment in works. Although saltpeter from new Prussian-style putrefaction works had not been produced yet (the process taking about 18 months), in only a year France had gunpowder to export. A chief beneficiary of this surplus was the American Revolution. By careful testing and adjusting the proportions and grinding time, powder from mills such as at Essonne outside Paris became the best in the world by 1788, and inexpensive.[62][63]
Two British physicists, Andrew Noble and Frederick Abel, worked to improve the properties of gunpowder during the late 19th century. This formed the basis for the Noble-Abel gas equation for internal ballistics.[64]
The introduction of smokeless powder in the late 19th century led to a contraction of the gunpowder industry. After the end of World War I, the majority of the British gunpowder manufacturers merged into a single company, "Explosives Trades limited"; and a number of sites were closed down, including those in Ireland. This company became Nobel Industries Limited; and in 1926 became a founding member of Imperial Chemical Industries. The Home Office removed gunpowder from its list of Permitted Explosives; and shortly afterwards, on 31 December 1931, the former Curtis & Harvey's Glynneath gunpowder factory at Pontneddfechan, in Wales, closed down, and it was demolished by fire in 1932.[65] The last remaining gunpowder mill at the Royal Gunpowder Factory, Waltham Abbey was damaged by a German parachute mine in 1941 and it never reopened.[55] This was followed by the closure of the gunpowder section at the Royal Ordnance Factory, ROF Chorley, the section was closed and demolished at the end of World War II; and ICI Nobel's Roslin gunpowder factory, which closed in 1954.[55][66] This left ICI Nobel's Ardeer site in Scotland, which included a gunpowder factory, as the only factory in Great Britain producing gunpowder. The gunpowder area of the Ardeer site closed in October 1976.[55] 781b155fdc